Structural and electronic properties of fluorine-doped lithium oxide as a solid electrolyte interphase for lithium air batteries

Author:

ERTEKİN Nilüfer1ORCID

Affiliation:

1. YALOVA UNIVERSITY

Abstract

In Lithium-Air Batteries (LABs), the solid electrolyte interphase (SEI) layer plays a crucial role as a protective barrier and regulates the transport of lithium ions, preventing deterioration of the electrode and electrolyte during undesired reactions. The SEI layer acts as a barrier between the lithium anode and electrolyte, enhancing the stability and efficiency of LABs during charge/discharge cycles. In this study, the effectiveness of a composite SEI layer consisting of Li_2 O and LiF was investigated. The dynamical stability of this configuration was verified using Density Functional Theory and analysis of the phonon spectrum. The analysis of the electronic properties of the structure revealed a noteworthy decrease in the band gap. This decrease in the band gap is particularly significant as it contributes to the improved performance of lithium-air batteries. Furthermore, additional investigations were conducted to examine the effects of doping other halogen atoms and increasing the concentration of fluorine. However, these results revealed that the electronegativity differences between the atoms rendered such structures unstable, posing challenges in achieving stable configurations for practical applications.

Publisher

Kütahya Dumlupinar Üniversitesi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3