Recommendations for Improvement of the Thermal Performance of an Office Building Based on Retrofitting the Glazed Curtain Wall

Author:

DİKMEN Neşe1ORCID,ALTUNDAŞ CananORCID

Affiliation:

1. ISPARTA UYGULAMALI BİLİMLER ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ

Abstract

Glazed curtain wall systems have become indispensable particularly in office buildings due to their light weight, aesthetic appearance, easy installation, and resistance to climate conditions. Curtain walls, however, also have problems in terms of thermal efficiency because of their wide, glazed windows and metal frames that have high thermal conductivity. The aim of this study is to offer proposals for improving the thermal performance of an office building with a glass curtain wall system built in a hot-humid climate zone. An office building constructed in Antalya, Turkey was modelled with the help of DesignBuilder energy simulation software, and various modifications were made to the model in order to improve the thermal performance of the building. With the improvements proposed in the study, it is possible to decrease the annual thermal loads of the whole building by 6.6%, and the annual thermal loads of the space with the curtain wall by 33.2%. The study revealed that applying an additional skin is more effective than lowering the U-value of the glass of the curtain wall in terms of thermal performance improvement.

Funder

Süleyman Demirel Üniversitesi

Publisher

Gazi University Journal of Science

Subject

Multidisciplinary,General Engineering

Reference44 articles.

1. [1] Örkmez, A., “Çift kabuk cephe sistemlerinde ısıl konforun değerlendirilmesi”, Master’s Thesis, İstanbul Technical University, İstanbul, 39-40, (2012).

2. [2] Anderson, T., Luther, M., “Designing for thermal comfort near a glazed exterior wall”, Architectural Science Review, 55(3): 186-195, (2012).

3. [3] Dağsöz, A.K., Işıkel, K, and Bayraktar, K.G., “Yapılarda sıcak etkisinin getirdiği problemlerin ısı yalıtımı ile çözümü ve enerji tasarrufu”, IV. National Plumbing Engineering Congress, İzmir, 329-339, (1999).

4. [4] Bae, J.M., Oh, J.H., and Kim, S.S., “The effects of the frame ratio and glass on the thermal performance of a curtain wall system”, Energy Procedia, 78: 2488-2493, (2015).

5. [5] Kyritsis, A., Mathas, E., Antonucci D., Grottke, M., and Tselepis, S., “Energy improvement of office buildings in Southern Europe”, Energy and Buildings Journal, 123: 17-33, (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3