Generalized Four-momentum for Continuously Distributed Materials

Author:

Fedosin Sergey G.ORCID

Abstract

A four-dimensional differential Euler-Lagrange equation for continuously distributed materials is derived based on the principle of least action, and instead of Lagrangian, this equation contains the Lagrangian density. This makes it possible to determine the density of generalized four-momentum in covariant form as derivative of the Lagrangian density with respect to four-velocity of typical particles of a system taken with opposite sign, and then calculate the generalized four-momentum itself. It is shown that the generalized four-momentum of all typical particles of a system is an integral four-vector and therefore should be considered as a special type of four-vectors. The presented expression for generalized four-momentum exactly corresponds to the Legendre transformation connecting the Lagrangian and Hamiltonian. The obtained formulas are used to calculate generalized four-momentum of stationary and moving relativistic uniform systems for the Lagrangian with particles and vector fields, including electromagnetic and gravitational fields, acceleration field and pressure field. It turns out that the generalized four-momentum of a moving system depends on the total mass of particles, on the Lorentz factor and on the velocity of the system’s center of momentum. Besides, an additional contribution is made by the scalar potentials of the acceleration field and the pressure field at the center of system. The direction of the generalized four-momentum coincides with the direction of four-velocity of the system under consideration, while the generalized four-momentum is part of the relativistic four-momentum of the system.

Publisher

Gazi University Journal of Science

Reference34 articles.

1. [1] Landau, L.D., Lifshitz, E.M., “The Classical Theory of Fields”, Pergamon Press, (1951).

2. [2] Mekhitarian, V.M., “The invariant representation of generalized momentum”, Journal of Contemporary Physics, 47(6): 249-256, (2012).

3. [3] Kienzler, R., Herrmann, G., “On the four-dimensional formalism in continuum mechanics”, Acta Mechanica, 61: 103-125, (2003).

4. [4] Goldstein, H., Poole, C.P., Safko, J.L., “Classical Mechanics”, Third Edition, Addison-Wesley, (2001).

5. [5] Fedosin, S.G., “About the cosmological constant, acceleration field, pressure field and energy”, Jordan Journal of Physics, 9(1): 1-30, (2016).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3