Survival Prediction with Extreme Learning Machine, Supervised Principal Components and Regularized Cox Models in High-Dimensional Survival Data by Simulation

Author:

CANTAŞ TÜRKİŞ Fulden1ORCID,KURT OMURLU İmran2ORCID,TÜRE Mevlüt2ORCID

Affiliation:

1. MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ, TIP FAKÜLTESİ

2. AYDIN ADNAN MENDERES ÜNİVERSİTESİ, TIP FAKÜLTESİ

Abstract

Mortality risks of important diseases such as cancer can be estimated using gene profiles which are high-dimensional data obtained from gene expression sequences. However, it is impossible to analyze high-dimensional data with classical techniques due to multicollinearity, time-consuming processing load, and difficulty interpreting the results. For this purpose, extreme learning machine methods, which can solve regression and classification problems, have become one of the most preferred machine learning methods regarding fast data analysis and ease of application. The goal of this study is to compare estimation performance of risk score and short-term survival with survival extreme learning machine methods, L2-penalty Cox regression, and supervised principal components analysis in generated high-dimensional survival data. The survival models have been evaluated by Harrell’s concordance index, integrated Brier score, F1 score, kappa coefficient, the area under the curve, the area under precision-recall, accuracy, and Matthew’s correlation coefficient. All results showed that survival extreme learning machine methods that allow analyzing high-dimensional survival data without the necessity of dimension reduction perform very competitive with the other popular classical methods used in the study.

Publisher

Gazi University Journal of Science

Subject

Multidisciplinary,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3