1. [1] Alice, T., & Jose, K. K. “Marshall-Olkin logistic processes”, STARS Int J, 6, 1-11, (2005).
[2] Almetwally, E. M., & Almongy, H. M. “Estimation Methods for the New Weibull-Pareto Distribution: Simulation and Application”, Journal of Data Science, 17(3), 610-630, (2019a).
[3] Almetwally, E. M., & Almongy, H. M. “Maximum Product Spacing and Bayesian Method for Parameter Estimation for Generalized Power Weibull Distribution under Censoring Scheme”, Journal of Data Science, 17(2), 407-444, (2019b).
[4] Almetwally, E. M., Almongy, H. M., & El sayed Mubarak, A. “Bayesian and Maximum Likelihood Estimation for the Weibull Generalized Exponential Distribution Parameters Using Progressive Censoring Schemes”, Pakistan Journal of Statistics and Operation Research, 14(4), 853-868, (2018).
[5] Almetwaly, E. M., & Almongy, H. M. “Estimation of the Generalized Power Weibull Distribution Parameters Using Progressive Censoring Schemes” International Journal of Probability and Statistics, 7(2), 51-61, (2018).
[6] Balakrishnan N, Ng HKT “Precedence-type tests and applications” Wiley, Hoboken, (2006).
[7] Balakrishnan, N. “Progressive censoring methodology: an appraisal”. Test, (2007).
[8] Basheer, A. M. “Alpha power inverse Weibull distribution with reliability application”. Journal of Taibah University for Science, 13(1), 423-432, (2019).
[9] Birnbaum, Z. W., & Saunders, S. C. “Estimation for a family of life distributions with applications to fatigue” Journal of Applied probability, 6(2), 328-347, (1969).
[10] Bourguignon, M., Silva, R. B., & Cordeiro, G. M. “The Weibull-G family of probability distributions” Journal of Data Science, 12(1), 53-68, (2014).
[11] Dey, S., Ghosh, I., & Kumar, D. “Alpha-power transformed lindley distribution: properties and associated inference with application to earthquake data”. Annals of Data Science, 6(4), 623-650, (2018).
[12] Dey, S., Nassar, M., & Kumar, D. “Alpha power transformed inverse Lindley distribution: A distribution with an upside-down bathtub-shaped hazard function”. Journal of Computational and Applied Mathematics, 348, 130-145, (2019).
[13] Elbatal, I., Ahmad, Z., Elgarhy, B. M., & Almarashi, A. M. “A New Alpha Power Transformed Family of Distributions: Properties and Applications to the Weibull Model” Journal of Nonlinear Science and Applications, 12(1), 1-20, (2018).
[14] Ghitany, M. E. “Marshall-Olkin extended Pareto distribution and its application” International Journal of Applied Mathematics, 18(1), 17, (2005).
[15] Ghitany, M. E., Al-Awadhi, F. A., & Alkhalfan, L. A. “Marshall–Olkin extended Lomax distribution and its application to censored data” Communications in Statistics—Theory and Methods, 36(10), 1855-1866, (2007).
[16] Ghitany, M. E., Al-Hussaini, E. K., & Al-Jarallah, R. A. “Marshall–Olkin extended Weibull distribution and its application to censored data” Journal of Applied Statistics, 32(10), 1025-1034, (2005).
[17] Hassan, A. S., & Abd-Allah, M. “On the Inverse Power Lomax Distribution” Annals of Data Science, 6(2), 259-278, (2019).
[18] Hassan, A. S., Elgarhy, M., Mohamd, R. E., & Alrajhi, S. (2019). “On the Alpha Power Transformed Power Lindley Distribution” Journal of Probability and Statistics, 2019.
[19] Kundu, D., & Howlader, H. “Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data. Computational Statistics & Data Analysis, 54(6), 1547-1558, (2010).
[20] Mahdavi, A., & Kundu, D. “A new method for generating distributions with an application to exponential distribution”. Communications in Statistics-Theory and Methods, 46(13), 6543-6557, (2017).
[21] Marshall, A. W., & Olkin, I. “A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families”. Biometrika, 84(3), 641-652, (1997).
[22] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. “Equation of state calculations by fast computing machines”. J. Chem Phys., 21, 1087 – 1091, (1953).
[23] Nassar, M., Abo-Kasem, O., Zhang, C., & Dey, S. “Analysis of Weibull Distribution Under Adaptive Type-II Progressive Hybrid Censoring Scheme”. Journal of the Indian Society for Probability and Statistics, 19(1), 25-65, (2018).
[24] Nassar, M., Alzaatreh, A., Mead, M., & Abo-Kasem, O. “Alpha power Weibull distribution: Properties and applications”. Communications in Statistics-Theory and Methods, 46(20), 10236-10252, (2017).
[25] Nassar, M., Kumar, D., Dey, S., Cordeiro, G. M., & Afify, A. Z. “The Marshall–Olkin alpha power family of distributions with applications”. Journal of Computational and Applied Mathematics, 351, 41-53, (2019).
[26] Okasha, H. M., & Kayid, M. “A new family of Marshall–Olkin extended generalized linear exponential distribution”. Journal of Computational and Applied Mathematics, 296, 576-592, (2016).
[27] Smith, R. L., & Naylor, J. “A comparison of maximum likelihood and Bayesian estimators for the three‐parameter Weibull distribution”. Journal of the Royal Statistical Society: Series C (Applied Statistics), 36(3), 358-369, (1987).