1. 1. D. Q. Kem, D. A. Kraus, Extended surface heat transfer, McGraw-Hill, New York, (1972).2. S. O. Akindeinde, Parker-Sochacki method for the solution of convective straight fins problem with temperature-dependent thermal conductivity, International Journal of Nonlinear Science 20 (2018) 1-11.3. E. M. A. Mokheimer, Performance of annular fins with different profiles subject to variable heat transfer coefficient, International Journal of Heat and Mass Transfer 45,
2. (17) (2002) 3631-3642.4. D. D. Ganji, A. Rajabi, Assessment of homotopy-perturbation and perturbation methods in heat radiation equation, International Communications in Heat and Mass Transfer 33 (2006) 391-400.5. D. D. Ganji, The application of he's homotopy perturbation method to nonlinear equations arising in heat transfer, Physics Letters A 355 (2006) 337-341.6. B. T. F. Chung, B. X. Zhang, Optimization of radiating fin array including mutual irradiations between radiator elements, ASME Journal of Heat Transfer 113,
3. (4) (1991) 814-822.7. D. Lesnic, P. Heggs, A decomposition method for power-law fin-type problems, International Communications in Heat and Mass Transfer 31,
4. (5) (2004) 673-682.8. J. G. Bartas, W. H. Sellers, Radiation fin effectiveness, ASME Journal of Heat Transfer 82,
5. (1) (1960) 73-75.9. S. B. Coskun, M. T. Atay, Analysis of convective straight and radial fins with temperature-dependent thermal conductivity using variational iteration method with comparison with respect to finite element analysis, Mathematical Problems in Engineering (2007), Article ID 42072, 15.10. E. Cuce, P.M. Cuce, Homotopy perturbation method for temperature distribution, fin efficiency and fin effectiveness of convective straight fins with temperature-dependent thermal conductivity, Institution of Mechanical Engineers (2012) 1-7.11. C. H. Chiu, C. K. Chen, A decomposition method for solving the convective longitudinal fins with variable thermal conductivity, International Journal of Heat and Mass Transfer 45,