Data-Driven Mechanisms for a Newsvendor Problem: A Case Study

Author:

Gokgur Burak1ORCID,Sancaktaroğlu Afşin2ORCID,Kocabıyıkoğlu Ayşe2ORCID

Affiliation:

1. Sabancı Üniversitesi

2. SABANCI ÜNİVERSİTESİ

Abstract

Reducing food waste is paramount for a sustainable future as its implications are important to achieve sustainable development goals set by the United Nations. In many industry groups, the public awareness of reducing food waste that may potentially emerge along firms’ operations has grown. In the era of Big Data, one of the most pursued exercises of this escalating attention on reducing food waste is to utilize artificial intelligence techniques to incorporate sustainability concerns into the decision framework. Many firms embrace machine learning methods to build effective decision mechanisms that help make efficient and sustainable decisions. In this study, we analyze the impact of blending machine learning approaches with demand forecasting and order quantity decisions for a firm operating in a setting where the market demand is random, and the demand structure is not observable to the firm. The performance of the methodology is evaluated on sunflower seed demand data taken from Tadım company. Our results suggest that the joint consideration of forecasting and ordering decisions using the quantile regression approach can lead the firm to decrease its operational cost by 6% on average.

Publisher

Gazi University Journal of Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3