Biogenic Synthesis of Zinc Oxide Nanoparticles with Leaves and Cones Concentrate of Cupressus Arizonica and Assessment of Photocatalytic and Antibacterial Efficiency

Author:

Üstün Özgür Mahmure1ORCID,Ortadoğulu Ebru2ORCID,Erdemir Burak2ORCID,Aydın Kurç Mine3ORCID

Affiliation:

1. YILDIZ TEKNİK ÜNİVERSİTESİ

2. YILDIZ TECHNICAL UNIVERSITY

3. TEKIRDAG NAMIK KEMAL UNIVERSITY

Abstract

Among the metal oxide nanoparticles, zinc oxide (ZnO) has recently been cited as the new material of the future due to its unique properties and wide application areas. In this study, we offer a simple technique for the production of extremely stable ZnO nanoparticles (CA-ZnO NPs) using the aqueous and ethyl alcohol (1/1, v/v) extract of Cupressus arizonica (CA, Blue cypress) leaves and cones and zinc acetate (Zn-Ac) salt. The structure of the produced CA-ZnO NPs was elucidated and nanoparticles were used as a photocatalyst for the removal of textile dyestuffs. The particle sizes of CA-ZnO NPs calcined at different temperatures (60ºC, 150ºC, and 400ºC) increased from 20 nm to 50 nm. Produced CA-ZnO NPs were used to investigate photocatalytic degradation of Basic Yellow (BY28), Basic Violet 39 (BV39), Methylene blue (MB), Brilliant Blue (BB3) and Basic Red 46 (BR46) in aqueous solution under UV- light and daylight irradiation. After stirring dye solutions containing CA-ZnO NP for one hour in darkness and 7 hours under UV- light, decolorization rates varied from 53% to 100%. Decolorization of the dyestuff molecules follows the pseudo first-order kinetics. Produced CA-ZnO NPs showed antibacterial efficiency against Escherichia coli and Staphylococcus aureus. CA-ZnO NPs formed zones ranging from 10 mm to 11 mm against gram+ and gram- bacteria. Green production of ZnO NPs utilizing Cupressus arizonica plant extract can replace chemical methods, and the resulting CA-ZnO NPs can be used in industries like water purification. This eco-friendly biogenic synthesis method is a new, inexpensive and useful technique suitable for large scale.

Publisher

Gazi University Journal of Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3