Affiliation:
1. Department of Earth and Space Sciences, University of California, Los Angeles, California 90095-1567;
Abstract
Optical dating of sediment using optically stimulated luminescence has become important for studying Earth surface processes, and this technique continues to develop rapidly. A group of closely linked luminescence methods can be used to estimate the time since grains of quartz and feldspar were last exposed to daylight by detecting their subsequent response to environmental ionizing radiation exposure. The technique is well suited to the dating of deposits as young as one year to several hundred thousand years. Recent technical developments have established a dating protocol with improved precision, a high degree of reliability, and an in-built means to detect incomplete signal removal during deposition. This approach has been extended to age estimation for single grains, opening up a wider range of potential environments and new possibilities for understanding postdepositional grain movement. Ongoing research offers the possibility of significant age range extension and novel applications including low-temperature thermochronology.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics
Cited by
332 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献