Affiliation:
1. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
2. Department of Terrestrial Magnetism, Carnegie Institution, Washington, D.C. 20015
Abstract
Meteorites are samples of dozens of small planetary bodies that formed in the early Solar System. They exhibit great petrologic diversity, ranging from primordial accretional aggregates (chondrites), to partially melted residues (primitive achondrites), to once fully molten magmas (achondrites). It has long been thought that no single parent body could be the source of more than one of these three meteorite lithologies. This view is now being challenged by a variety of new measurements and theoretical models, including the discovery of primitive achondrites, paleomagnetic analyses of chondrites, thermal modeling of planetesimals, the discoveries of new metamorphosed chondrites and achondrites with affinities to some chondrite groups, and the possible identification of extant partially differentiated asteroids. These developments collectively suggest that some chondrites could in fact be samples of the outer, unmelted crusts of otherwise differentiated planetesimals with silicate mantles and metallic cores. This may have major implications for the origin of meteorite groups, the meaning of meteorite paleomagnetism, the rates and onset times of accretion, and the interior structures and histories of asteroids.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics
Cited by
114 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献