Affiliation:
1. Department of Earth Sciences, Syracuse University, Syracuse, New York 13244;,
2. Department of Geology, University of Vermont, Burlington, Vermont 05405;
Abstract
The New Guinea region evolved within the obliquely and rapidly converging Australian and Pacific plate boundary zone. It is arguably one of the most tectonically complex regions of the world, and its geodynamic evolution involved microplate formation and rotation, lithospheric rupture to form ocean basins, arc-continent collision, subduction polarity reversal, collisional orogenesis, ophiolite obduction, and exhumation of (ultra)high-pressure metamorphic rocks. We describe the major onshore and offshore tectonic and geologic components, including plate boundaries, seismicity, faults, and magmatism, and we integrate these with emerging ideas about mantle dynamics to evaluate the Cenozoic tectonic evolution of New Guinea. Future research opportunities to resolve the mantle structure beneath New Guinea will enable mantle dynamics to be linked to lithospheric and surface processes. Virtually all plate tectonic and mantle processes have been active in the New Guinea region throughout the Cenozoic, and, as such, its tectonic evolution has global significance.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics
Cited by
257 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献