Affiliation:
1. Earth and Environmental Systems Institute, Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802;, mil2@psu.edu
Abstract
The base of the Critical Zone includes the mantle of altered soil and rock—regolith—that changes in response to chemical, physical, and biological processes occurring at Earth's surface. These processes are recorded in the chemistry of the regolith, and this long-term record can often be deciphered. For example, on eroding ridgetops where flows are generally downward for water and upward for earth material, element concentrations vary with depth to constitute depletion, addition, depletion-enrichment, and biogenic profiles. Models can be used to explore the records of mineral dissolution, atmospheric input, coupled dissolution-precipitation, and biolifting documented in these profiles. These models enable interpretation of the effects of time, climate, rates of erosion, and human and other biotic impacts on the profile patterns. By testing quantitative models against the long-term record of information in regolith, we will learn to project changes arising from human and natural perturbations of the Critical Zone.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics
Cited by
173 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献