Affiliation:
1. Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
2. Bayerisches Geoinstitut, Universität Bayreuth, 95447 Bayreuth, Germany;
Abstract
Impacts are central to the origin and evolution of planets of the Solar System. The shapes of craters, which can reach up to 1,000 km in diameter on the Moon, provide critical information on the large-scale dynamics of the impact and related shock. Minerals formed at high pressure and temperature found in shocked terrestrial rocks and meteorites give additional and complementary insights on the shock process at a smaller scale, typically from a few micrometers to a few millimeters. Local flaws in rocks, such as voids and mineral interfaces, are the preferential sites for the formation of high-pressure melts and minerals. Calculations based on the physics of shocks and the thermodynamics and kinetics of mineral transformations provide orders of magnitude for the duration, transient pressure, and prevailing temperature conditions of shock events. Case studies on shocked terrestrial and extraterrestrial materials illustrate the links between these parameters and impact duration. Many of the high-pressure mineral phases of olivine, pyroxenes, feldspars, silica, phosphates, titanium oxide, and carbon have been discovered in these heavily shocked rocks and provide unique opportunities to study the high-pressure minerals that exist in the deep Earth.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献