Evolution of a Model System: New Insights from the Study of Anolis Lizards

Author:

Muñoz Martha M.1,Frishkoff Luke O.2,Pruett Jenna34,Mahler D. Luke5

Affiliation:

1. Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA;

2. Department of Biology, University of Texas at Arlington, Arlington, Texas, USA

3. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA

4. Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland, USA

5. Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada

Abstract

Following decades of intensive study, Anolis lizards have emerged as a biological model system. We review how new research on anoles has advanced our understanding of ecology and evolution, challenging long-standing paradigms and opening new areas of inquiry. Recent anole research reveals how changes in behavior can restructure ecological communities and can both stimulate and stymie evolution, sometimes simultaneously. Likewise, investigation of anoles as spatial or phylogenetic evolutionary experiments has documented evolutionary repeatability across spatiotemporal scales, while also illuminating its limits. Current research places anoles as a promising model for Anthropocene biology, with recent work illustrating how species respond as humans reconfigure natural habitats, alter the climate, and create novel environments and communities through urbanization and species introduction. Combined with ongoing methodological developments in genomics, phylogenetics, and ecology, the growing foundational knowledge of Anolis positions them as a powerful model system in ecology and evolution for years to come.

Publisher

Annual Reviews

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3