Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes

Author:

Schimel Joshua P.1

Affiliation:

1. Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93108, USA;

Abstract

Throughout Earth's history, drought has been a common crisis in terrestrial ecosystems; in human societies, it can cause famine, one of the Four Horsemen of the apocalypse. As the global hydrological cycle intensifies with global warming, deeper droughts and rewetting will alter, and possibly transform, ecosystems. Soil communities, however, seem more tolerant than plants or animals are to water stress—the main effects, in fact, on soil processes appear to be limited diffusion and the limited supply of resources to soil organisms. Thus, the rains that end a drought not only release soil microbes from stress but also create a resource pulse that fuels soil microbial activity. It remains unclear whether the effects of drought on soil processes result from drying or rewetting. It is also unclear whether the flush of activity on rewetting is driven by microbial growth or by the physical/chemical processes that mobilize organic matter. In this review, I discuss how soil water, and the lack of it, regulates microbial life and biogeochemical processes. I first focus on organismal-level responses and then consider how these influence whole-soil organic matter dynamics. A final focus is on how to incorporate these effects into Earth System models that can effectively capture dry–wet cycling.

Publisher

Annual Reviews

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3