Evidence for Initial Mass Function Variation in Massive Early-Type Galaxies

Author:

Smith Russell J.1

Affiliation:

1. Centre for Extragalactic Astronomy, Durham University, Durham DH1 3LE, United Kingdom;

Abstract

The initial mass function (IMF), describing the distribution of birth masses of stars, plays a pivotal role in establishing the observable properties of galaxies. This article reviews the evidence for variation in the IMF of massive early-type galaxies (ETGs), especially from spectroscopic studies and from dynamical and gravitational lensing measurements over the past decade. The principal conclusions are as follows: ▪  The spectra of massive ETGs depart from the predictions of models with Milky Way–like IMFs in a way that is best reproduced by assuming a steeper (bottom-heavy) IMF below ∼1 M. ▪  Lensing and dynamical models, assuming a constant mass-to-light ratio for the stellar component, infer heavy IMFs, superficially supporting the result from spectra. ▪  The spectroscopic signal exhibits a steep gradient, however, and may be confined to the innermost region with scales ≲2 kpc; such internal variation in the stellar mass-to-light ratio would invalidate a key assumption of most dynamics and lensing studies. ▪  For masses above the main sequence turnoff in ancient populations (≳1 M), there is little evidence for a steeper IMF in massive ETGs or their high-redshift progenitors; rather, a slightly shallower slope is preferred in this regime from several different arguments. ▪  Steep internal gradients may be responsible for some of the apparent discrepancies between different methods and also point to the cause of the IMF variation being restricted to conditions specific to the in situ formation phase of ETG cores.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3