The Dust Attenuation Law in Galaxies

Author:

Salim Samir1,Narayanan Desika23

Affiliation:

1. Department of Astronomy, Indiana University, Bloomington, Indiana 47405, USA;

2. Department of Astronomy, University of Florida, Gainesville, Florida 32611, USA;

3. Cosmic Dawn Center at the Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen; DTU-Space, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Abstract

Understanding the properties of dust attenuation curves in galaxies and the physical mechanisms that shape them are among the fundamental questions of extragalactic astrophysics, with great practical significance for deriving the physical properties of galaxies. Attenuation curves result from a combination of dust grain properties, dust content, and the spatial arrangement of dust and different populations of stars. In this review, we assess the state of the field, paying particular attention to extinction curves as the building blocks of attenuation laws. We introduce a quantitative framework to characterize extinction and attenuation curves, present a theoretical foundation for interpreting empirical results, overview an array of observational methods, and review observational results at low and high redshifts. Our main conclusions include the following: ▪  Attenuation curves exhibit a wide range of UV-through-optical slopes, from curves with shallow (Milky Way–like) slopes to those exceeding the slope of the Small Magellanic Cloud extinction curve. ▪  The slopes of the curves correlate strongly with the effective optical opacities, in the sense that galaxies with lower dust column density (lower visual attenuation) tend to have steeper slopes, whereas the galaxies with higher dust column density have shallower (grayer) slopes. ▪  Galaxies exhibit a range of 2175-Å UV bump strengths, including no bump, but, on average, are suppressed compared with the average Milky Way extinction curve. ▪  Theoretical studies indicate that both the correlation between the slope and the dust column as well as variations in bump strength may result from geometric and radiative transfer effects.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3