Magnetohydrodynamic Waves in the Solar Corona

Author:

Nakariakov Valery M.123,Kolotkov Dmitrii Y.14

Affiliation:

1. Centre for Fusion, Space and Astrophysics, Physics Department, University of Warwick, Coventry CV4 7AL, United Kingdom;

2. School of Space Research, Kyung Hee University, Yongin, 446-701, Korea

3. St. Petersburg Branch, Special Astrophysical Observatory, Russian Academy of Sciences, 196140 St. Petersburg, Russia

4. Institute of Solar-Terrestrial Physics, Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia

Abstract

The corona of the Sun is a unique environment in which magnetohydrodynamic (MHD) waves, one of the fundamental processes of plasma astrophysics, are open to a direct study. There is striking progress in both observational and theoretical research of MHD wave processes in the corona, with the main recent achievements summarized as follows: ▪  Both periods and wavelengths of the principal MHD modes of coronal plasma structures, such as kink, slow and sausage modes, are confidently resolved. ▪  Scalings of various parameters of detected waves and waveguiding plasma structures allow for the validation of theoretical models. In particular, kink oscillation period scales linearly with the length of the oscillating coronal loop, clearly indicating that they are eigenmodes of the loop. Damping of decaying kink and standing slow oscillations depends on the oscillation amplitudes, demonstrating the importance of nonlinear damping. ▪  The dominant excitation mechanism for decaying kink oscillations is associated with magnetized plasma eruptions. Propagating slow waves are caused by the leakage of chromospheric oscillations. Fast wave trains could be formed by waveguide dispersion. ▪  The knowledge gained in the study of coronal MHD waves provides ground for seismological probing of coronal plasma parameters, such as the Alfvén speed, the magnetic field and its topology, stratification, temperature, fine structuring, polytropic index, and transport coefficients.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3