Affiliation:
1. Nonlinear Physical Chemistry Unit, Université Libre de Bruxelles, 1050 Brussels, Belgium;
Abstract
By modifying a physical property of a solution like its density or viscosity, chemical reactions can modify and even trigger convective flows. These flows in turn affect the spatiotemporal distribution of the chemical species. A nontrivial coupling between reactions and flows then occurs. We present simple model systems of this chemo-hydrodynamic coupling. In particular, we illustrate the possibility of chemical reactions controlling or triggering viscous fingering, Rayleigh–Taylor, double-diffusive, and convective dissolution instabilities. We discuss laboratory experiments performed to study these phenomena and compare the experimental results to theoretical predictions. In each case we contrast the chemo-hydrodynamic patterns and instabilities with those that develop in nonreactive systems and unify the different dynamics in terms of the common features of the related spatial mobility profiles.
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献