Affiliation:
1. MicroNanophysics Research Laboratory, RMIT University, and the Melbourne Centre for Nanofabrication, Melbourne, VIC 3001 Australia;,
Abstract
Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10–1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena—from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization—underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.
Cited by
469 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献