Amplitude/Higgs Modes in Condensed Matter Physics

Author:

Pekker David1,Varma C.M.2

Affiliation:

1. Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15217

2. Department of Physics and Astronomy, University of California, Riverside, California 92521;

Abstract

The order parameter and its variations in space and time in many different states in condensed matter physics at low temperatures are described by the complex function Ψ(r, t). These states include superfluids, superconductors, and a subclass of antiferromagnets and charge density waves. The collective fluctuations in the ordered state may then be categorized as oscillations of phase and amplitude of Ψ(r, t). The phase oscillations are the Goldstone modes of the broken continuous symmetry. The amplitude modes, even at long wavelengths, are well defined and are decoupled from the phase oscillations only near particle-hole symmetry, where the equations of motion have an effective Lorentz symmetry, as in particle physics and if there are no significant avenues for decay into other excitations. They bear close correspondence with the so-called Higgs modes in particle physics, whose prediction and discovery are very important for the standard model of particle physics. In this review, we discuss the theory and the possible observation of the amplitude or Higgs modes in condensed matter physics—in superconductors, cold atoms in periodic lattices, and uniaxial antiferromagnets. We discuss the necessity for at least approximate particle-hole symmetry as well as the special conditions required to couple to such modes because, being scalars, they do not couple linearly to the usual condensed matter probes.

Publisher

Annual Reviews

Subject

Condensed Matter Physics,General Materials Science

Cited by 303 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3