Affiliation:
1. Istituto Nazionale di Ottica–Consiglio Nazionale delle Ricerche (INO-CNR) Bose–Einstein Condensation (BEC) Center, Dipartimento di Fisica, Università di Trento, Povo, Italy;
2. Trento Institute for Fundamental Physics and Applications, Istituto Nazionale di Fisica Nucleare (INFN), Povo, Italy
Abstract
This article summarizes some of the relevant features exhibited by binary mixtures of Bose–Einstein condensates in the presence of coherent coupling at zero temperature. The coupling, which is experimentally produced by proper photon transitions, can involve either negligible momentum transfer from the electromagnetic radiation (Rabi coupling) or large momentum transfer (Raman coupling) associated with spin–orbit effects. The nature of the quantum phases exhibited by coherently coupled mixtures is discussed in detail, including their paramagnetic, ferromagnetic, and, in the case of spin–orbit coupling, supersolid phases. The behavior of the corresponding elementary excitations is discussed, with explicit emphasis on the novel features caused by the spin-like degree of freedom. Focus is further given to the topological excitations (solitons, vortices) as well as to the superfluid properties. This review also points out relevant open questions that deserve more systematic theoretical and experimental investigations.
Subject
Condensed Matter Physics,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献