Topological Magnons: A Review

Author:

McClarty Paul A.1

Affiliation:

1. Max Planck Institute for the Physics of Complex Systems, Dresden, Germany;

Abstract

At sufficiently low temperatures, magnetic materials often enter correlated phases hosting collective, coherent magnetic excitations such as magnons or triplons. Drawing on the enormous progress on topological materials of the past few years, recent research has led to new insights into the geometry and topology of these magnetic excitations. Berry phases associated with magnetic dynamics can lead to observable consequences in heat and spin transport, whereas analogs of topological insulators and semimetals can arise within magnon band structures from natural magnetic couplings. Magnetic excitations offer a platform to explore the interplay of magnetic symmetries and topology, to drive topological transitions using magnetic fields; examine the effects of interactions on topological bands; and generate topologically protected spin currents at interfaces. In this review, we survey progress on all these topics, highlighting aspects of topological matter that are unique to magnon systems and the avenues yet to be fully investigated. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Publisher

Annual Reviews

Subject

Condensed Matter Physics,General Materials Science

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3