Challenges and Opportunities for Applications of Unconventional Superconductors

Author:

Gurevich Alex1

Affiliation:

1. Department of Physics, Old Dominion University, Norfolk, Virginia 23529;.

Abstract

Since the discovery of high-Tc cuprates, the quest for new superconductors has shifted toward more anisotropic, strongly correlated materials with lower carrier densities and competing magnetic and charge-density wave orders. Although these materials’ features enhance superconducting correlations, they also result in serious problems for applications at liquid nitrogen (and higher) temperatures and strong magnetic fields so that such conventional characteristics as the critical temperature Tc and the upper critical field Hc2 are no longer the main parameters of merit. This happens because of strong fluctuations of the order parameter, thermally activated hopping of pinned vortices, and electromagnetic granularity, as has been established after extensive investigations of cuprates and Fe-based superconductors (FBSs). In this paper, I give an overview of those mechanisms crucial for power and magnet applications and discuss the materials’ restrictions that must be satisfied to make superconductors useful at high temperatures and magnetic fields. These restrictions become more and more essential at higher temperatures and magnetic fields, particularly for the yet-to-be-discovered superconductors operating at room temperatures. In this case, the performance of superconductors is limited by destructive fluctuations of the order parameter so that higher superfluid density and weaker electronic anisotropy, which reduce these fluctuations, can become far more important than higher Tc.

Publisher

Annual Reviews

Subject

Condensed Matter Physics,General Materials Science

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3