Image-Computable Ideal Observers for Tasks with Natural Stimuli

Author:

Burge Johannes123

Affiliation:

1. Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;

2. Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

3. Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Abstract

An ideal observer is a theoretical model observer that performs a specific sensory-perceptual task optimally, making the best possible use of the available information given physical and biological constraints. An image-computable ideal observer (pixels in, estimates out) is a particularly powerful type of ideal observer that explicitly models the flow of visual information from the stimulus-encoding process to the eventual decoding of a sensory-perceptual estimate. Image-computable ideal observer analyses underlie some of the most important results in vision science. However, most of what we know from ideal observers about visual processing and performance derives from relatively simple tasks and relatively simple stimuli. This review describes recent efforts to develop image-computable ideal observers for a range of tasks with natural stimuli and shows how these observers can be used to predict and understand perceptual and neurophysiological performance. The reviewed results establish principled links among models of neural coding, computational methods for dimensionality reduction, and sensory-perceptual performance in tasks with natural stimuli.

Publisher

Annual Reviews

Subject

Clinical Neurology,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3