Exploring Energy Landscapes

Author:

Wales David J.1

Affiliation:

1. Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;

Abstract

Recent advances in the potential energy landscapes approach are highlighted, including both theoretical and computational contributions. Treating the high dimensionality of molecular and condensed matter systems of contemporary interest is important for understanding how emergent properties are encoded in the landscape and for calculating these properties while faithfully representing barriers between different morphologies. The pathways characterized in full dimensionality, which are used to construct kinetic transition networks, may prove useful in guiding such calculations. The energy landscape perspective has also produced new procedures for structure prediction and analysis of thermodynamic properties. Basin-hopping global optimization, with alternative acceptance criteria and generalizations to multiple metric spaces, has been used to treat systems ranging from biomolecules to nanoalloy clusters and condensed matter. This review also illustrates how all this methodology, developed in the context of chemical physics, can be transferred to landscapes defined by cost functions associated with machine learning.

Publisher

Annual Reviews

Subject

Physical and Theoretical Chemistry

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3