Affiliation:
1. Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia 30322, USA;
Abstract
Quantile regression offers a useful alternative strategy for analyzing survival data. Compared with traditional survival analysis methods, quantile regression allows for comprehensive and flexible evaluations of covariate effects on a survival outcome of interest while providing simple physical interpretations on the time scale. Moreover, many quantile regression methods enjoy easy and stable computation. These appealing features make quantile regression a valuable practical tool for delivering in-depth analyses of survival data. This article provides a review of a comprehensive set of statistical methods for performing quantile regression with different types of survival data. The review covers various survival scenarios, including randomly censored data, data subject to left truncation or censoring, competing risks and semicompeting risks data, and recurrent events data. Two real-world examples are presented to illustrate the utility of quantile regression for practical survival data analyses.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献