On the Statistical Formalism of Uncertainty Quantification

Author:

Berger James O.1,Smith Leonard A.23

Affiliation:

1. Department of Statistical Science, Duke University, Durham, North Carolina 27708, USA;

2. Centre for the Analysis of Time Series, Department of Statistics, London School of Economics, London WC2A 2AE, United Kingdom

3. Pembroke College, University of Oxford, Oxford OX1 1DW, United Kingdom;

Abstract

The use of models to try to better understand reality is ubiquitous. Models have proven useful in testing our current understanding of reality; for instance, climate models of the 1980s were built for science discovery, to achieve a better understanding of the general dynamics of climate systems. Scientific insights often take the form of general qualitative predictions (i.e., “under these conditions, the Earth's poles will warm more than the rest of the planet”); such use of models differs from making quantitative forecasts of specific events (i.e. “high winds at noon tomorrow at London's Heathrow Airport”). It is sometimes hoped that, after sufficient model development, any model can be used to make quantitative forecasts for any target system. Even if that were the case, there would always be some uncertainty in the prediction. Uncertainty quantification aims to provide a framework within which that uncertainty can be discussed and, ideally, quantified, in a manner relevant to practitioners using the forecast system. A statistical formalism has developed that claims to be able to accurately assess the uncertainty in prediction. This article is a discussion of if and when this formalism can do so. The article arose from an ongoing discussion between the authors concerning this issue, the second author generally being considerably more skeptical concerning the utility of the formalism in providing quantitative decision-relevant information.

Publisher

Annual Reviews

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3