Toward Integrative Bayesian Analysis in Molecular Biology

Author:

Ickstadt Katja1,Schäfer Martin23,Zucknick Manuela4

Affiliation:

1. Faculty of Statistics, TU Dortmund University, 44227 Dortmund, Germany;

2. Mathematical Institute, Heinrich Heine University, 40225 Düsseldorf, Germany

3. Epidemiology Unit, German Rheumatism Research Centre, 10117 Berlin, Germany

4. Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, University of Oslo, 0317 Oslo, Norway

Abstract

In the postgenome era, multiple types of molecular data for the same set of samples are often available and should be analyzed jointly in an integrative analysis in order to maximize the information gain. Bayesian methods are particularly well suited for integrating different biological data sources. In this article, we cover crucial tasks and corresponding methods with a focus on integrative analyses. We emphasize gene prioritization, model-based cluster approaches for subgroup identification, regression modeling, and prediction, as well as structure learning using network models. Our review introduces prior concepts for sparsity and variable selection and concludes with some aspects on validation and computation.

Publisher

Annual Reviews

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3