Affiliation:
1. Department of Statistics, The Ohio State University, Columbus, Ohio 43210;
Abstract
Although both randomized and nonrandomized study data relevant to a question of treatment efficacy are often available and separately analyzed, these data are rarely formally combined in a single analysis. One possible reason for this is the apparent or feared disagreement of effect estimates across designs, which can be attributed both to differences in estimand definition and to analyses that may produce biased estimators. This article reviews specific models and general frameworks that aim to harmonize analyses from the two designs and combine them via a single analysis that ideally exploits the relative strengths of each design. The development of such methods is still in its infancy, and examples of applications with joint analyses are rare. This area would greatly benefit from more attention from researchers in statistical methods and applications.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献