Affiliation:
1. Department of Statistics, Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6340, USA;
Abstract
Using a small example as an illustration, this article reviews multivariate matching from the perspective of a working scientist who wishes to make effective use of available methods. The several goals of multivariate matching are discussed. Matching tools are reviewed, including propensity scores, covariate distances, fine balance, and related methods such as near-fine and refined balance, exact and near-exact matching, tactics addressing missing covariate values, the entire number, and checks of covariate balance. Matching structures are described, such as matching with a variable number of controls, full matching, subset matching and risk-set matching. Software packages in R are described. A brief review is given of the theory underlying propensity scores and the associated sensitivity analysis concerning an unobserved covariate omitted from the propensity score.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献