Affiliation:
1. Statistical Laboratory, Faculty of Mathematics, University of Cambridge, Cambridge CB3 0WB, United Kingdom;
2. Dipartimento di Matematica ed Informatica, Università degli Studi di Cagliari, 09124 Cagliari, Italy;
Abstract
We describe and contrast two distinct problem areas for statistical causality: studying the likely effects of an intervention (effects of causes) and studying whether there is a causal link between the observed exposure and outcome in an individual case (causes of effects). For each of these, we introduce and compare various formal frameworks that have been proposed for that purpose, including the decision-theoretic approach, structural equations, structural and stochastic causal models, and potential outcomes. We argue that counterfactual concepts are unnecessary for studying effects of causes but are needed for analyzing causes of effects. They are, however, subject to a degree of arbitrariness, which can be reduced, though not in general eliminated, by taking account of additional structure in the problem. Expected final online publication date for the Annual Review of Statistics and Its Application, Volume 9 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献