Affiliation:
1. Duke-NUS Graduate Medical School, National University of Singapore, Singapore 169857;
2. Department of Statistics and Institute for Social Research, University of Michigan, Ann Arbor, Michigan 48109;
Abstract
A dynamic treatment regime consists of a sequence of decision rules, one per stage of intervention, that dictate how to individualize treatments to patients, based on evolving treatment and covariate history. These regimes are particularly useful for managing chronic disorders and fit well into the larger paradigm of personalized medicine. They provide one way to operationalize a clinical decision support system. Statistics plays a key role in the construction of evidence-based dynamic treatment regimes—informing the best study design as well as efficient estimation and valid inference. Owing to the many novel methodological challenges this area offers, it has been growing in popularity among statisticians in recent years. In this article, we review the key developments in this exciting field of research. In particular, we discuss the sequential multiple assignment randomized trial designs, estimation techniques like Q-learning and marginal structural models, and several inference techniques designed to address the associated nonstandard asymptotics. We reference software whenever available. We also outline some important future directions.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
149 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献