Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More

Author:

Alley Richard B.1,Anandakrishnan Sridhar1,Christianson Knut23,Horgan Huw J.4,Muto Atsu1,Parizek Byron R.5,Pollard David1,Walker Ryan T.67

Affiliation:

1. Department of Geosciences and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania 16802;

2. Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195

3. Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

4. Antarctic Research Centre, Victoria University of Wellington, Wellington 6140, New Zealand

5. Mathematics and Geoscience, The Pennsylvania State University, DuBois, Pennsylvania 15801

6. Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20742

7. Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771

Abstract

Ocean-ice interactions have exerted primary control on the Antarctic Ice Sheet and parts of the Greenland Ice Sheet, and will continue to do so in the near future, especially through melting of ice shelves and calving cliffs. Retreat in response to increasing marine melting typically exhibits threshold behavior, with little change for forcing below the threshold but a rapid, possibly delayed shift to a reduced state once the threshold is exceeded. For Thwaites Glacier, West Antarctica, the threshold may already have been exceeded, although rapid change may be delayed by centuries, and the reduced state will likely involve loss of most of the West Antarctic Ice Sheet, causing >3 m of sea-level rise. Because of shortcomings in physical understanding and available data, uncertainty persists about this threshold and the subsequent rate of change. Although sea-level histories and physical understanding allow the possibility that ice-sheet response could be quite fast, no strong constraints are yet available on the worst-case scenario. Recent work also suggests that the Greenland and East Antarctic Ice Sheets share some of the same vulnerabilities to shrinkage from marine influence.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3