Atmospheric Dynamics of Hot Exoplanets

Author:

Heng Kevin1,Showman Adam P.2

Affiliation:

1. Physics Institute, Center for Space and Habitability, University of Bern, CH-3012 Bern, Switzerland;

2. Department of Planetary Sciences and the Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721;

Abstract

The characterization of exoplanetary atmospheres has come of age in the past decade, as astronomical techniques now allow for albedos, chemical abundances, temperature profiles and maps, rotation periods, and even wind speeds to be measured. Atmospheric dynamics sets the background state of density, temperature, and velocity that determines or influences the spectral and temporal appearance of an exoplanetary atmosphere. Hot exoplanets are most amenable to these characterization techniques. In this review, we focus on highly irradiated, large exoplanets (the hot Jupiters), as astronomical data begin to confront theoretical questions. We summarize the basic atmospheric quantities inferred from the astronomical observations. We review the state of the art by addressing a series of current questions, and look toward the future by considering a separate set of exploratory questions. Attaining the next level of understanding requires a concerted effort of constructing multifaceted, multiwavelength datasets for benchmark objects. Understanding clouds presents a formidable obstacle, as they introduce degeneracies into the interpretation of spectra, yet their properties and existence are directly influenced by atmospheric dynamics. Confronting general circulation models with these multifaceted, multiwavelength datasets will help us understand these and other degeneracies.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3