Continental Crustal Growth Processes Recorded in the Gangdese Batholith, Southern Tibet

Author:

Zhu Di-Cheng1,Wang Qing1,Weinberg Roberto F.2,Cawood Peter A.2,Zhao Zhidan1,Hou Zeng-Qian3,Mo Xuan-Xue1

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China;

2. School of Earth, Atmosphere, and Environment, Monash University, Melbourne, Victoria, Australia

3. Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China

Abstract

The continental crust in the overriding plate of the India-Asia collision zone in southern Tibet is characterized by an overthickened layer of felsic composition with an underlying granulite-eclogite layer. A large data set indicates that this crust experienced magmatism from 245 to 10 Ma, as recorded by the Gangdese Batholith. Magmatism was punctuated by flare-ups at 185−170, 90−75, and 55−45 Ma caused by a combination of external and internal factors. The growth of this crust starts with a period dominated by fractional crystallization and the formation of voluminous (ultra)mafic arc cumulates in the lower crust during subduction, followed by their melting during late-subduction and collision, due to changes in convergence rate. This combined accumulation-melting process resulted in the vertical stratification and density sorting of the Gangdese crust. Comparisons with other similarly thickened collision zones suggests that this is a general process that leads to the stabilization of continental crust. ▪ The Gangdese Batholith records the time-integrated development of the world's thickest crust, reaching greater than 50 km at 55–45 Ma and greater than 70 km after 32 Ma. ▪ The Gangdese Batholith records three magmatic flare-ups in response to distinct drivers; the last one at 55−45 Ma marks the arrival of India. ▪ Magmatism was first dominated by fractional crystallization (accumulation) followed by crustal melting: the accumulation-melting process. ▪ Accumulation-melting in other collision zones provides a general process for vertical stratification and stabilization of continental crust.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3