Identification and Extrapolation of Causal Effects with Instrumental Variables

Author:

Mogstad Magne123,Torgovitsky Alexander1

Affiliation:

1. Department of Economics, University of Chicago, Chicago, Illinois 60637, USA;

2. Statistics Norway, 0177 Oslo, Norway

3. National Bureau of Economic Research, Cambridge, Massachusetts 02138, USA

Abstract

Instrumental variables (IV) are widely used in economics to address selection on unobservables. Standard IV methods produce estimates of causal effects that are specific to individuals whose behavior can be manipulated by the instrument at hand. In many cases, these individuals are not the same as those who would be induced to treatment by an intervention or policy of interest to the researcher. The average causal effect for the two groups can differ significantly if the effect of the treatment varies systematically with unobserved factors that are correlated with treatment choice. We review the implications of this type of unobserved heterogeneity for the interpretation of standard IV methods and for their relevance to policy evaluation. We argue that making inferences about policy-relevant parameters typically requires extrapolating from the individuals affected by the instrument to the individuals who would be induced to treatment by the policy under consideration. We discuss a variety of alternatives to standard IV methods that can be used to rigorously perform this extrapolation. We show that many of these approaches can be nested as special cases of a general framework that embraces the possibility of partial identification.

Publisher

Annual Reviews

Subject

Economics and Econometrics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Policy evaluation with multiple instrumental variables;Journal of Econometrics;2024-07

2. Econometric causality: The central role of thought experiments;Journal of Econometrics;2024-07

3. Using and Interpreting Fixed Effects Models;Journal of Accounting Research;2024-06-13

4. Randomized Controlled History?;SSRN Electronic Journal;2024

5. Financial Literacy and Financial Education: An Overview;SSRN Electronic Journal;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3