Predictive Processing: A Circuit Approach to Psychosis

Author:

Keller Georg B.12,Sterzer Philipp3

Affiliation:

1. 1Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; email: georg.keller@fmi.ch

2. 2Faculty of Natural Science, University of Basel, Basel, Switzerland

3. 3Department of Psychiatry, University of Basel, Basel, Switzerland

Abstract

Predictive processing is a computational framework that aims to explain how the brain processes sensory information by making predictions about the environment and minimizing prediction errors. It can also be used to explain some of the key symptoms of psychotic disorders such as schizophrenia. In recent years, substantial advances have been made in our understanding of the neuronal circuitry that underlies predictive processing in cortex. In this review, we summarize these findings and how they might relate to psychosis and to observed cell type–specific effects of antipsychotic drugs. We argue that quantifying the effects of antipsychotic drugs on specific neuronal circuit elements is a promising approach to understanding not only the mechanism of action of antipsychotic drugs but also psychosis. Finally, we outline some of the key experiments that should be done. The aims of this review are to provide an overview of the current circuit-based approaches to psychosis and to encourage further research in this direction.

Publisher

Annual Reviews

Reference115 articles.

1. Computational psychiatry: towards a mathematically informed understanding of mental illness;J. Neurol. Neurosurg. Psychiatry,2016

2. The computational anatomy of psychosis;Front. Psychiatry,2013

3. Early-course unmedicated schizophrenia patients exhibit elevated prefrontal connectivity associated with longitudinal change;J. Neurosci.,2015

4. Self-supervised learning from images with a joint-embedding predictive architecture,2023

5. Visuomotor coupling shapes the functional development of mouse visual cortex;Cell,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3