Extrachromosomal DNA: Biogenesis and Functions in Cancer

Author:

Curtis Ellis J.12,Rose John C.3,Mischel Paul S.14,Chang Howard Y.35

Affiliation:

1. Department of Pathology, Stanford University School of Medicine, Stanford, California, USA;

2. Medical Scientist Training Program, University of California, San Diego, La Jolla, California, USA

3. Center for Personal Dynamic Regulomes, Stanford University, Stanford, California, USA;

4. Sarafan Chemistry, Engineering, and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, California, USA

5. Howard Hughes Medical Institute, Stanford, California, USA

Abstract

In cancer, oncogenes can untether themselves from chromosomes onto circular, extrachromosomal DNA (ecDNA) particles. ecDNA are common in many of the most aggressive forms of cancer of women and men and of adults and children, and they contribute to treatment resistance and shorter survival for patients. Hiding in plain sight and missing from cancer genome maps, ecDNA was not, until recently, widely recognized to be an important feature of cancer pathogenesis. However, extensive new data demonstrate that ecDNA is a frequent and potent driver of aggressive cancer growth and treatment failure that can arise early or late in the course of the disease. The non-Mendelian genetics of ecDNA lies at the heart of the problem. By untethering themselves from chromosomes, ecDNA are randomly distributed to daughter cells during cell division, promoting high oncogene copy number, intratumoral genetic heterogeneity, accelerated tumor evolution, and treatment resistance due to rapid genome change. Further, the circular shape of ecDNA, and its high level of chromatin accessibility, promotes oncogene transcription and generates unique enhancer–promoter interactions in cis, as well as cooperative regulatory interactions between ecDNA particles in trans. In this review, we discuss the state of the field and its implications for patients with oncogene-amplified cancers. Expected final online publication date for the Annual Review of Cancer Biology, Volume 8 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Publisher

Annual Reviews

Subject

Cancer Research,Cell Biology,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3