Affiliation:
1. Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia;
2. Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080;
Abstract
Uncontrolled cell proliferation and genomic instability are common features of cancer and can arise from, respectively, the loss of cell-cycle control and defective checkpoints. Ubiquitin-mediated proteolysis, ultimately executed by ubiquitin-ligating enzymes (E3s), plays a key part in cell-cycle regulation and is dominated by two multisubunit E3s, the anaphase-promoting complex (or cyclosome) (APC/C) and SKP1–cullin-1–F-box (SCF) complex. We highlight the role of APC/C and the SCF bound to F-box proteins, FBXW7, SKP2, and β-TrCP, in regulating the abundance of select fundamental proteins, primarily during the cell cycle, that are associated with human cancer. The clinical success of the first proteasome inhibitor, bortezomib, in treating multiple myeloma and mantle-cell lymphoma set the precedent for viewing the ubiquitin–proteasome system as a druggable target for cancer. Given that there are more E3s than kinases, selective, small-molecule E3 inhibitors have the potential of opening up another dimension in the therapeutic armamentarium for the treatment of cancer.
Subject
Cancer Research,Cell Biology,Oncology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献