Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils

Author:

Comellas Gemma1,Rienstra Chad M.123

Affiliation:

1. Center for Biophysics and Computational Biology,

2. Department of Chemistry, and

3. Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;,

Abstract

Protein structure determination methods using magic-angle spinning solid-state nuclear magnetic resonance (MAS SSNMR) have experienced a remarkable development in the past decade. Significant advances in instrumentation, sample preparation, spectroscopic techniques, and computational methods have made possible the determination of the first high-resolution structures of a peptide and a protein in 2002. Subsequent developments allowed the investigation of larger proteins, the initial application of automated analysis routines, and substantial improvements in structural resolution. The application of these methods has enabled the investigation of amyloid fibril structures, conformational dynamics, and their assembly pathways at an atomic level for the first time, as these are systems not accessible by other common techniques. Recent advances and future trends for protein structure determination using MAS SSNMR, as well as its application to the study of amyloid fibrils, are reviewed.

Publisher

Annual Reviews

Subject

Cell Biology,Biochemistry,Bioengineering,Structural Biology,Biophysics

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3