Matrix Mechanosensing: From Scaling Concepts in ’Omics Data to Mechanisms in the Nucleus, Regeneration, and Cancer

Author:

Discher Dennis E.1,Smith Lucas1,Cho Sangkyun1,Colasurdo Mark2,García Andrés J.2,Safran Sam3

Affiliation:

1. Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, Pennsylvania 19104;

2. Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332

3. Department of Materials and Interfaces, Weizmann Institute of Science, Rehovet 76100, Israel

Abstract

Many of the most important molecules of life are polymers. In animals, the most abundant of the proteinaceous polymers are the collagens, which constitute the fibrous matrix outside cells and which can also self-assemble into gels. The physically measurable stiffness of gels, as well as tissues, increases with the amount of collagen, and cells seem to sense this stiffness. An understanding of this mechanosensing process in complex tissues, including fibrotic disease states with high collagen, is now utilizing ’omics data sets and is revealing polymer physics–type, nonlinear scaling relationships between concentrations of seemingly unrelated biopolymers. The nuclear structure protein lamin A provides one example, with protein and transcript levels increasing with collagen 1 and tissue stiffness, and with mechanisms rooted in protein stabilization induced by cytoskeletal stress. Physics-based models of fibrous matrix, cytoskeletal force dipoles, and the lamin A gene circuit illustrate the wide range of testable predictions emerging for tissues, cell cultures, and even stem cell–based tissue regeneration. Beyond the epigenetics of mechanosensing, the scaling in cancer of chromosome copy number variations and other mutations with tissue stiffness suggests that genomic changes are occurring by mechanogenomic processes that now require elucidation.

Publisher

Annual Reviews

Subject

Cell Biology,Biochemistry,Bioengineering,Structural Biology,Biophysics

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3