Ball-and-Chain Inactivation in Potassium Channels

Author:

Sukomon Nattakan1,Fan Chen1,Nimigean Crina M.12

Affiliation:

1. Department of Anesthesiology, Weill Cornell Medical College, New York, New York, USA;

2. Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA

Abstract

Carefully orchestrated opening and closing of ion channels control the diffusion of ions across cell membranes, generating the electrical signals required for fast transmission of information throughout the nervous system. Inactivation is a parsimonious means for channels to restrict ion conduction without the need to remove the activating stimulus. Voltage-gated channel inactivation plays crucial physiological roles, such as controlling action potential duration and firing frequency in neurons. The ball-and-chain moniker applies to a type of inactivation proposed first for sodium channels and later shown to be a universal mechanism. Still, structural evidence for this mechanism remained elusive until recently. We review the ball-and-chain inactivation research starting from its introduction as a crucial component of sodium conductance during electrical signaling in the classical Hodgkin and Huxley studies, through the discovery of its simple intuitive mechanism in potassium channels during the molecular cloning era, to the eventual elucidation of a potassium channel structure in a ball-and-chain inactivated state.

Publisher

Annual Reviews

Subject

Cell Biology,Biochemistry,Bioengineering,Structural Biology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3