Gene Regulation in and out of Equilibrium

Author:

Wong Felix12,Gunawardena Jeremy3

Affiliation:

1. Institute for Medical Engineering & Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2. Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA

3. Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;

Abstract

Determining whether and how a gene is transcribed are two of the central processes of life. The conceptual basis for understanding such gene regulation arose from pioneering biophysical studies in eubacteria. However, eukaryotic genomes exhibit vastly greater complexity, which raises questions not addressed by this bacterial paradigm. First, how is information integrated from many widely separated binding sites to determine how a gene is transcribed? Second, does the presence of multiple energy-expending mechanisms, which are absent from eubacterial genomes, indicate that eukaryotes are capable of improved forms of genetic information processing? An updated biophysical foundation is needed to answer such questions. We describe the linear framework, a graph-based approach to Markov processes, and show that it can accommodate many previous studies in the field. Under the assumption of thermodynamic equilibrium, we introduce a language of higher-order cooperativities and show how it can rigorously quantify gene regulatory properties suggested by experiment. We point out that fundamental limits to information processing arise at thermodynamic equilibrium and can only be bypassed through energy expenditure. Finally, we outline some of the mathematical challenges that must be overcome to construct an improved biophysical understanding of gene regulation.

Publisher

Annual Reviews

Subject

Cell Biology,Biochemistry,Bioengineering,Structural Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3