Control as an Enabler for Electrified Mobility

Author:

Alleyne Andrew G.1,Aksland Christopher T.1

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;

Abstract

This article outlines the importance of electrified mobility (e-mobility) in modern transport. One key goal of this review is to illustrate the role that control has played, and must continue to play, as e-mobility grows. The coordination of power in multiple modes (mechanical, electrical, and thermal) requires sophisticated controller algorithms. This review advocates for model-based approaches to control since there may not be readily available physical systems from which to gather data and do data-based control. A second goal of the article is to present methods for modeling these powertrain systems that are modular, scalable, flexible, and computationally efficient. A graph-based approach satisfies many of the desired criteria. The third goal is to review control approaches for these classes of systems and detail a hierarchical approach that makes trades across different domains of power. Optimization-based approaches are well suited to achieving the regulation and tracking goals, along with the minimization of costs and the satisfaction of constraints. Multiple examples, within this article and the references therein, support the presentation throughout. This field of e-mobility is rapidly growing, and control engineers are uniquely positioned to have an impact and lead many of the critical developments. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Publisher

Annual Reviews

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Agent Approach to Safe Control of Energy Systems using Control Barrier Functions;2024 American Control Conference (ACC);2024-07-10

2. Control Barrier Proximal Dynamics: A Contraction Theoretic Approach for Safety Verification;IEEE Control Systems Letters;2024

3. Development of a Graph-based Modeling Framework for Transient Exergy Analysis;2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm);2022-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3