Privacy in Control and Dynamical Systems

Author:

Han Shuo1,Pappas George J.2

Affiliation:

1. Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA;

2. Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;

Abstract

Many modern dynamical systems, such as smart grids and traffic networks, rely on user data for efficient operation. These data often contain sensitive information that the participating users do not wish to reveal to the public. One major challenge is to protect the privacy of participating users when utilizing user data. Over the past decade, differential privacy has emerged as a mathematically rigorous approach that provides strong privacy guarantees. In particular, differential privacy has several useful properties, including resistance to both postprocessing and the use of side information by adversaries. Although differential privacy was first proposed for static-database applications, this review focuses on its use in the context of control systems, in which the data under processing often take the form of data streams. Through two major applications—filtering and optimization algorithms—we illustrate the use of mathematical tools from control and optimization to convert a nonprivate algorithm to its private counterpart. These tools also enable us to quantify the trade-offs between privacy and system performance.

Publisher

Annual Reviews

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Differentially Private Reward Functions for Markov Decision Processes;2024 IEEE Conference on Control Technology and Applications (CCTA);2024-08-21

2. System Design Approach for Control of Differentially Private Dynamical Systems;2024 American Control Conference (ACC);2024-07-10

3. Differential Privacy in Nonlinear Dynamical Systems with Tracking Performance Guarantees;2024 American Control Conference (ACC);2024-07-10

4. The Economics of Privacy and Utility: Investment Strategies;IEEE Transactions on Information Forensics and Security;2024

5. Privacy-Utility Tradeoffs Against Limited Adversaries;IEEE Transactions on Automatic Control;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3