Stochastic Dynamical Modeling of Turbulent Flows

Author:

Zare A.1,Georgiou T.T.2,Jovanović M.R.3

Affiliation:

1. Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, USA

2. Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92697, USA

3. Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, USA;

Abstract

Advanced measurement techniques and high-performance computing have made large data sets available for a range of turbulent flows in engineering applications. Drawing on this abundance of data, dynamical models that reproduce structural and statistical features of turbulent flows enable effective model-based flow control strategies. This review describes a framework for completing second-order statistics of turbulent flows using models based on the Navier–Stokes equations linearized around the turbulent mean velocity. Dynamical couplings between states of the linearized model dictate structural constraints on the statistics of flow fluctuations. Colored-in-time stochastic forcing that drives the linearized model is then sought to account for and reconcile dynamics with available data (that is, partially known statistics). The number of dynamical degrees of freedom that are directly affected by stochastic excitation is minimized as a measure of model parsimony. The spectral content of the resulting colored-in-time stochastic contribution can alternatively arise from a low-rank structural perturbation of the linearized dynamical generator, pointing to suitable dynamical corrections that may account for the absence of the nonlinear interactions in the linearized model.

Publisher

Annual Reviews

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3