Exploiting Liquid Surface Tension in Microrobotics

Author:

Barbot Antoine1,Ortiz Francisco1,Bolopion Aude1,Gauthier Michaël1,Lambert Pierre2

Affiliation:

1. FEMTO-ST Institute, CNRS UMR 6174, Université Bourgogne Franche-Comté, Besançon, France;

2. Transfers, Interfaces, and Processes (TIPs), Université Libre de Bruxelles, Brussels, Belgium;

Abstract

Surface tension effects are known to be dominant at the submillimeter scale. Within this context, the literature has extensively described the underlying physics (e.g., surface tension, wetting, surface texturation, and coatings), and capillary forces have been exploited in a variety of applications (e.g., capillary picking, self-alignment, capillary sealing, and capillary bearings). As several stimuli can be used to control liquid menisci, these forces have been used mainly in microrobotics in open loop (i.e., without real-time feedback). However, at least two major sources of uncertainty hinder these forces from working properly in open loop: the variability due to contact-angle hysteresis (the difference between wetting and unwetting) and the variability in the involved volume of liquid. To be able to reject these disturbances, successful sensor integration and associated advanced control schemes need to be embedded in capillary microrobotic microsystems. This article analyzes research contributions in this field from three different perspectives: the stimulus action of the surface tension effect (light, B-field, etc.), the application field (actuation, picking, sealing, etc.), and the sensing and control schemes. Technologically complex developments coexist with elegant and straightforward engineering solutions. Biological aspects of surface tension are not included in this review.

Publisher

Annual Reviews

Subject

Artificial Intelligence,Human-Computer Interaction,Engineering (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3