Mechanisms of ATM Activation

Author:

Paull Tanya T.1

Affiliation:

1. Howard Hughes Medical Institute, Department of Molecular Biosciences, and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712;

Abstract

The ataxia-telangiectasia mutated (ATM) protein kinase is a master regulator of the DNA damage response, and it coordinates checkpoint activation, DNA repair, and metabolic changes in eukaryotic cells in response to DNA double-strand breaks and oxidative stress. Loss of ATM activity in humans results in the pleiotropic neurodegeneration disorder ataxia-telangiectasia. ATM exists in an inactive state in resting cells but can be activated by the Mre11–Rad50–Nbs1 (MRN) complex and other factors at sites of DNA breaks. In addition, oxidation of ATM activates the kinase independently of the MRN complex. This review discusses these mechanisms of activation, as well as the posttranslational modifications that affect this process and the cellular factors that affect the efficiency and specificity of ATM activation and substrate phosphorylation. I highlight functional similarities between the activation mechanisms of ATM, phosphatidylinositol 3-kinases (PI3Ks), and the other PI3K-like kinases, as well as recent structural insights into their regulation.

Publisher

Annual Reviews

Subject

Biochemistry

Cited by 365 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3