Affiliation:
1. Carnegie Observatories, Pasadena, California 91101;,
Abstract
Considerable progress has been made in determining the Hubble constant over the past two decades. We discuss the cosmological context and importance of an accurate measurement of the Hubble constant, focusing on six high-precision distance-determination methods: Cepheids, tip of the red giant branch, maser galaxies, surface brightness fluctuations, the Tully-Fisher relation, and Type Ia supernovae. We discuss in detail known systematic errors in the measurement of galaxy distances and how to minimize them. Our best current estimate of the Hubble constant is 73±2 (random) ± 4 (systematic) km s−1Mpc−1. The importance of improved accuracy in the Hubble constant will increase over the next decade with new missions and experiments designed to increase the precision in other cosmological parameters. We outline the steps that will be required to deliver a value of the Hubble constant to 2% systematic uncertainty and discuss the constraints on other cosmological parameters that will then be possible with such accuracy.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
307 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献